
1Scientific Data |          (2025) 12:616  | https://doi.org/10.1038/s41597-025-04896-y

www.nature.com/scientificdata

ERA5–Drought: Global drought 
indices based on ECMWF reanalysis
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Droughts are increasingly intensified by human-induced climate change and pose a growing threat to 
society. Thus, enhancing our capabilities to monitor drought occurrence and intensity is crucial. This 
paper introduces a new dataset of drought indices derived from the 5th generation ECMWF reanalysis 
system (ERA5), which offers long-term monitoring of the global climate in both deterministic and 
probabilistic forms. This global dataset is freely accessible through an ECMWF-hosted data store, and it 
entails two prominent drought indices: the Standardized Precipitation Index (SPI) and the Standardized 
Precipitation Evapotranspiration Index (SPEI). Both indices are calculated over a range of accumulation 
periods from 1 month to 4 years and are available for the full ERA5 climatology from 1940 to today. It 
also contains validation data that indicates the quality of these drought indices. The ERA5–Drought 
dataset serves as a valuable tool for environmental agencies and supports sectors such as water 
management and agriculture, thus contributing to efforts that monitor water and food security.

Background & Summary
Drought has long been recognized as one of the costliest natural hazards faced by societies1. There exist many 
different definitions of drought: meteorological drought is defined as a period of deficient precipitation, which 
in turn can induce agricultural and hydrological droughts that affect e.g., soil moisture, discharge, groundwater 
and reservoir storage. Hence, droughts can have very significant impacts on ecosystems, economies, and human 
livelihoods. The impact of a drought strongly depends on the time scale during which deficits accumulate2. It 
is generally hypothesized that the longer a drought persists, the bigger and more far-reaching the impacts are3. 
Prolonged precipitation deficits can cause water scarcity during which human water demands cannot be met, 
which can lead to food insecurity, cause social unrest and instability, and in extreme cases enforce migration.

The frequency and severity of drought events have intensified over the last century and are further expected 
to intensify as we progress into an even warmer future4,5. Human activities, such as deforestation and unsus-
tainable water use, and their feedback on the climate can further cause an exacerbation of drought events6–9. 
While droughts are occurring globally, highly-vulnerable and low and least development countries in particular 
experience an increasing drought risk that threats socio-economic well-being and puts livelihoods at risk10,11. 
Many of these countries lack well-developed water monitoring systems that enable integrated water resource 
management to accommodate the needs of communities and the economy in times of scarcity. A global archive 
of drought events that extends far back into the history could further help to compare and evaluate drought 
events, study their impact and elucidate trends. Social, economic, and scientific sectors would benefit from an 
extensive, global drought archive that is freely accessible and facilitates the identification of drought events, their 
extents, severity and trends over the last century.

Historical drought conditions can be assessed using weather variables recorded at weather stations or 
through remotely sensed datasets12. However, regions with low monitoring station density may suffer from 
unreliable estimations of drought due to limited data availability. The same holds for observations from synoptic 
stations that are interpolated to a global grid, such as the dataset from the Global Precipitation Climatology 
Centre (GPCC13). Remote sensing data provide a global alternative, especially if they can cover a long time 
record. The National Aeronautics and Space Administration’s Tropical Rainfall Measuring Mission (TRMM; 
active from 1997 to 201514) and the follow-up Global Precipitation Measurement mission (GPM; active since 
201415) have been used in conjunction with ground-based radar and rain gauge networks to establish a global 
long-term history of precipitation estimates since 1979. Similarly, the Global Precipitation Climatology Project 
(GPCP16) and the Climate Prediction Center’s Morphing Technique (CMORPH) from the National Oceanic and 
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Atmospheric Administration17 are just a few examples of operational efforts that provide long-term precipitation 
records. These records extend only back to 1979 and 1998 respectively, since satellite data build their foundation. 
Despite the fact that these datasets are fundamental assets for monitoring precipitation, they are not without 
inaccuracies and challenges connected to inter-calibration across sensors, as well as omission and commission 
errors18. Finally, these datasets provide only a partial picture of the water balance at the Earth’s surface as they 
only observe rainfall and miss the direct dependencies of drought on temperature through, for example, atmos-
pheric demand, which can further exacerbate drought conditions.

Global reanalyses — retrospective analyses of numerical weather prediction models generated from initial 
estimates of climate conditions and refined with observations19,20 — offer a more consistent spatial and tempo-
ral representation of water fluxes in the Earth system for drought assessment. Reanalyses provide a coherent 
picture of all atmospheric variables which facilitate the definition of multiple drought indices. For example, 
reanalysis-based drought indices can account for the loss of water from the land surface through evapotranspi-
ration and enable the quantification of atmospheric water demand (often expressed as potential evapotranspira-
tion in which the land surface can supply enough moisture to meet the atmospheric demand). While errors and 
uncertainties associated with a reanalysis are sometimes not fully assessed, there are several studies that demon-
strate how reanalyses can provide reliable information for most parts of the world21. For this reason reanalyses 
are commonly employed as a proxy for observational data22–24. Moreover, reanalysis data usually cover multiple 
decades and the entire globe, making them an invaluable resource for examining long-term statistical patterns 
and trends beyond observational records. Thus, the limitations imposed by sparse monitoring networks can be 
overcome by leveraging reanalysis datasets. Using reanalyses allows to not only monitor droughts globally, but 
also creates an extensive historical database that extends further back into the last century, enabling us to gain 
insights into global drought occurrence and evolution.

This paper describes the ERA5–Drought dataset — a reanalysis-based dataset of drought indices using the 
ECMWF Reanalysis version 5 (ERA5). ERA5 provides key variables required to calculate several drought indi-
ces25 to a resolution of 0.25° globally (around 28 km) from the start of the reanalysis in 1940 to today26. The 
reanalysis consists of 1 deterministic and 10 ensemble members, enabling the quantification of uncertainties 
arising from slightly different initial conditions in the simulation of the numerical weather prediction model. 
We believe that this dataset is a valuable resource for applications in many sectors, from the agricultural sector27, 
agencies and scientists in the field of food security and water scarcity28, and beyond. As this dataset utilises the 
same meteorological inputs as other hazard and impact-based datasets for, e.g., fire24, heat29, and flood30, it also 
facilitates the analysis of compound and cascading events in the Earth system, as well as the impact of drought 
on global and local resources and populations.

Methods
This study uses the latest ECMWF reanalysis database ERA526,31 to calculate a set of drought indices. Here, 
the focus is set on two most commonly used drought indices: the Standardized Precipitation Index (SPI,2) and 
the Standardized Precipitation Evapotranspiration Index (SPEI,32), but the dataset may expand in the future to 
include more indices based on the availability of fields for their calculation in ERA5. The methodology used to 
calculate the drought indices is described below.

Drought indices. Standardized Precipitation Index (SPI). The SPI2 is a widely used drought index that 
quantifies precipitation deficits over various time scales. The SPI provides a standardized measure of precipita-
tion anomalies, making it suitable for comparing drought severity across different regions with varying climatic 
conditions.

The general procedure for calculating the SPI as introduced by2 is as follows (see Fig. 1): First, a time series 
of precipitation for each point (i.e., grid point) is extracted and precipitation is accumulated over the previous n 
months using a moving window. A moving window is applied to obtain a value for each month, always consid-
ering the accumulation over the previous n months (hereafter termed accumulation period). Then a parametric 
statistical distribution is fitted to the time series for each calendar month. The Gamma distribution is often used 
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Fig. 1 The three steps to calculate a standardised precipitation index (SPI): first, a time series of precipitation 
is extracted and precipitation is accumulated over, e.g., 1, 3, 6, 12, 24, 36, 48 months using a moving window. 
Second, a parametric statistical distribution is fitted to the time series for each calendar month (e.g., the 
Gamma distribution), and the probabilities from this fitted distribution are transformed to the standard normal 
distribution. Third, the resulting index values indicate the number of standard deviations from the long-term 
mean and make it comparable in time and space.
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in the calculation2,33,34, but requires the removal of months without precipitation (i.e., P = 0 mm). Second, the 
probabilities from this fitted distribution are transformed to the standard normal distribution (z-distribution 
with μ = 0 and σ = 1). The resulting index values indicate the number of standard deviations from the long-term 
mean (climatology) and make it comparable in time (e.g., for different calendar months) and space. Finally, 
individual time steps are then interpreted as anomalies with respect to the standardized distribution. Negative 
values indicate enhanced precipitation deficits with respect to the climatology and dry anomalies; positive values 
indicate precipitation surplus with respect to the climatology and wet anomalies. The strength of these wet and 
dry anomalies depends on the magnitude of the index and can be categorised (see Tables 1+ 2).

This procedure can be applied to any time series of precipitation over different timescales, such as sub-annual 
accumulations of 1-, 3-, and 6 months, or multi-annual accumulations of 12-, 24-, 36-, and 48 months. This 
procedure is performed for every month of the record, i.e. a fit is performed for every calendar month and every 
accumulation period. However, in regions with many months or accumulated time periods without precipita-
tion it is difficult to make a robust estimation of the parameters of the gamma distribution. Many previous 
studies use the historical occurrence of zero precipitation to adjust the SPI values. I.e., the probability of encoun-
tering zero (p n

n0 1
P 0=
+
=  within a sample of length n and nP=0 entries being 0) is used to calculate the SPI value for 

these months as follows: 

p x p p F x( ) (1 ) ( , )p0 0 0 λ= + − >

where p is the probability distribution for precipitation x, and F(x, λ) is the parametric probability distribution 
fitted to the time series of non-zero precipitation. However, this can result in a skewed distribution, whose mean 
is not 0 anymore (see35). To adjust for this shift35 suggested to adjust the probability of zero precipitation using 
the centre of mass of the zero distribution instead of the maximum probability: 

= + ∗ +=p n n( 1)/(2 ( 1)),P0 0

 where p0
 is the center-of-mass-corrected mean probability of multiple zeros (see35).

A record of at least 30 years is generally recommended to get reliable and statistically significant drought indi-
ces. Using the categorisation from2 (see Table 1), moderate drought conditions occur if the SPI is between  − 1 
and −1.5, severe drought conditions occur if the SPI is between -1.5 and -2.0, and extreme drought conditions 
occur if the SPI is smaller than -2.0. Severely dry conditions occur by definition 4.4% of the time, and extremely 
dry conditions occur only 2.3% of the time, if the entire time series is used to fit a distribution. Values much 
larger or much lower than 3 and -3, respectively, should be interpreted with caution. As these values are on the 
edge of the distribution and occur very rarely, they come with a large uncertainty (for more details see, e.g.35) 
and should not be interpreted as exceptionally extreme; thus values larger than 3 or lower than -3 should simply 
be treated as extreme events.

In ERA5–Drought, precipitation from ERA5 is used and accumulated over 1, 3, 6, 12, 24, 36, 48 months to 
calculate the SPI. The Gamma distribution is then fitted to the precipitation accumulations analogous to2,35. 

Index value Categorization Probability [%]

≥2.00 extremely wet 2.3

1.50 to 1.99 severely wet 4.4

1.00 to 1.49 moderately wet 9.2

0 to 0.99 near-normal/mildly wet 34.1

−0.99 to 0 near-normal/mildly dry 34.1

−1.49 to −1.00 moderately dry 9.2

−1.99 to −1.50 severely dry 4.4

≤−2.00 extremely dry 2.3

Table 1. Categorization of the severity of wet and dry events based on the SPI values.

Index value Categorization Probability [%]

≥2.33 extremely wet 1

1.65 to 2.32 severely wet 4

1.28 to 1.64 moderately wet 5

0.84 to 1.27 mildly wet 10

−0.83 to 0.83 near-normal 60

−1.27 to −0.84 mildly dry 10

−1.64 to −1.28 moderately dry 5

−2.32 to −1.65 severely dry 4

≤ − 2.33 extremely dry 1

Table 2. Alternative categorization of the severity of wet and dry events often used for SPEI values.

https://doi.org/10.1038/s41597-025-04896-y


4Scientific Data |          (2025) 12:616  | https://doi.org/10.1038/s41597-025-04896-y

www.nature.com/scientificdatawww.nature.com/scientificdata/

The period 1991–2020 is used as reference period as recommended by the World Meteorological Organisation 
(WMO). A distribution is fitted if more than ten entries from that record are not zero; and the quality of that fit 
is evaluated in a second step (see Section Quality Criteria below). Months and accumulation periods without 
precipitation are corrected using the adjusted probability of zero precipitation35. The full climatology from the 
ERA5-based precipitation accumulations over 1, 3, 6, 12, 24, 36, 48 months since 1940 are then analysed with 
respect to that standardized distribution to obtain the SPI values.

Standardized Precipitation Evapotranspiration Index (SPEI). The SPEI integrates both precipitation and poten-
tial evapotranspiration (PET) data into drought assessment32. The SPEI captures the combined effect of water 
availability (approximated by precipitation) and atmospheric water demand on drought conditions. The inte-
gration of land surface processes impacts the accuracy of drought assessment, especially in arid and semi-arid 
regions where evaporation plays a significant role in water balance dynamics.

The computation of SPEI involves the estimation of PET which represents the amount of water that 
would evaporate and transpire from a hypothetical reference surface under prevailing meteorological condi-
tions. Various empirical and physically based methods are available for estimating PET, such as Hargreaves36, 
Thornthwaite37, Priestley-Taylor38, and Penman-Monteith39–42, among others and combinations of those. 
Especially the Hargreaves and the Thornthwaite parameterisation are often used as a first proxy of PET due 
their limited input data requirements. Studies indicate that the SPEI is very sensitive to the parameterisation 
used43,44 but most studies concur that the physically-based Penman-Monteith parameterisation should be used, 
if possible. The Penman-Monteith equation estimates potential evapotranspiration as a function of net radiation 
at the surface of a hypothetical crop, water vapor pressure deficit (es − ea), soil heat flux, and the slope of the 
temperature-saturation vapor pressure relationship as 
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 and hence requires a lot of input data that is often not available from observations.
The SPEI is computed by subtracting potential evapotranspiration from precipitation (i.e., P − PET), and 

indicates the theoretical surplus or deficit of water at the land surface, balancing water supply and atmospheric 
water demand. Analogous to the SPI, a distribution is fitted to the climatology of P − PET values, and standard-
ized to obtain the SPEI values that enable the assessment of drought severity relative to the long-term climatic 
variability. Vicente-Serrano et al.32 suggested to use the log-logistic distribution, which has also performed well 
in many other studies (e.g.45,46). As P − PET is barely identical to 0, no modifications analogous to the SPI are 
required.

In ERA5–Drought, the Penman-Monteith parameterisation is used to estimate potential evapotranspira-
tion to compute the SPEI. The log-logistic distribution is fitted to P − PET accumulations from 1991–2020, 
again following the WMO recommended reference period, before standardizing the values. The full climatology 
from 1940–today is then analysed with respect to that standardised distribution to obtain monthly SPEI values. 
Analogous to the SPI, accumulation periods of 1, 3, 6, 12, 24, 36, and 48 months are considered. Figure 2 illus-
trates a snapshot of the resulting SPEI-12 at the end of December 2023.

Quality criteria. In addition to the drought indices we perform a quality control of the derived dataset. The 
quality is assessed by testing if the distribution of the estimated drought indices over the reference period follows 
a normal distribution with mean 0 and standard deviation 1. The test is performed using the Shapiro-Wilks test 
for normality47 with α = 0.05. This quality test is performed for both drought indices and every calendar month 
using the derived indices during the reference period (1991–2020). The resulting p-value of the Shapiro-Wilks 
test is checked and the corresponding quality parameter is set to 0 if the p-value is below α = 0.05, and set to 1 if 
it exceeds α.

For the SPI, the probability of zero precipitation (’pzero’) is also provided. While the Gamma distribution is 
fitted to the historical record if at least ten values are not zero, this second quality criterion enables the definition 
of reasonable thresholds, and the use of drought indices in region with less than 30 months of precipitation 
larger than 0.
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Data Record
The ERA5-Drought dataset is available through the ECMWF-hosted Cross Data Store (XDS) via https://doi.org/
10.24381/9bea5e1648.

ERA5–Drought version 1.0 consists of the SPI and the SPEI calculated over a range of accumulation periods 
(1, 3, 6, 12, 24, 36, 48 months), where the accumulation period is indicated in the name of the drought index. For 
example, an SPI calculated with an accumulation period of 1 month is denoted as SPI-1, and an SPI calculated 
with an accumulation period of 12 months is denoted as SPI-12, and so on. The valid date of both drought indi-
ces is set to the end of each accumulation period, e.g., the SPI-12 in January 2024 uses the previous 12 months. 
All drought indices are available for each calendar month for which ERA5 data is available — i.e., from 1940 
to today. However, drought indices with accumulation periods larger than 1 month start with a corresponding 
delay. E.g., the SPI-12 only starts in January 1941, as the previous 12 months are required for the accumulation.

We used two products from the ERA5 dataset to calculate drought indices: the deterministic model output 
(simply called “reanalysis" in most applications), and the probabilistic model output that consists of 10 ensem-
ble members. Both SPI and SPEI are calculated for each product, rendering a deterministic and a probabilistic 
version of each drought index. The latter ensemble allows to assess uncertainties associated with ERA5 data.

At the time of writing, both ERA5 and ERA5–Drought data are available from January 1940 to December 
2024 (referred to as the “Consolidated dataset”). As the process of consolidating and releasing the official dataset 
takes about two months, there also exists an “Intermediate dataset” of ERA5, also referred to as ERA5T. This 
experimental dataset is published behind real-time and could be affected by changes before the official release 
date. An intermediate release is also issued for the ERA5–Drought dataset, enabling a near real-time monitoring 
of droughts with just one month of delay. However, the ERA5–Drought dataset is updated with each update of 
the consolidated ERA5 dataset as well.

Data format. ERA5–Drought is made available on a regular unprojected grid with spherical coordinates 
expressed in decimal degrees (EPSG:4326). Latitudes span the range from -90 to +90 degrees and are refer-
enced to the equator. Longitudes are in the range from -180 to 180 degrees, referenced to the Greenwich Prime 
Meridian, consistent with ERA531 and derived products that use ERA5 meteorological fields for other application 
such as fire prediction24 or heat stress29. The spatial resolution is 0.25° × 0.25° (about 28 km grid cell size).

Data are provided in netCDF format following the CF-standard v1.6 convention and for each drought index 
(SPI, SPEI), accumulation window (1, 3, 6, 12, 24, 36, 48), distribution (gamma for SPI, log-logistic for SPEI), 
dataset (ERA5 for the consolidated dataset or ERA5T for the unconsolidated dataset), stream (moda for the 
deterministic data stream, edmo for the probabilistic data stream, both following the ERA5 stream naming 
convention), and year and month separately. The files are named as follows:

Fig. 2 Example from the data record. Global snapshot of the SPEI-12 at the end of December 2023. The 
global map shows regions that have experienced dry (brown) and wet (green) conditions in 2023 according 
to the SPEI, i.e. the difference between precipitation and atmospheric water demand (expressed as potential 
evapotranspiration). The intensity of the dry and wet conditions is categorized as moderate, severe, and extreme 
and is shown as different shadings of brown and green, respectively. The intensity is evaluated with respect to 
the reference period 1991–2020. This map highlights the vast long-term drought that extends over large parts 
of South America that has been affecting people living in Brazil and neighbouring countries in the last years. 
However, also other countries in Africa and Central America, Canada, and Central Asia have experienced 
severe drought conditions. Regions without vegetation (deserts and polar regions) or insufficient quality are 
masked grey.
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(index)(window)_(distribution)_global_(dataset)_(stream)_ref1991to2020_
(yyyy)(mm).nc.

The file naming for the quality criteria (pzero, significance) is analogous and follows the structure:

(index)(window)_(index) (quality_criterion)_(distribution)_global_(data-
set)_(stream)_ref1991to2020_(mm).nc.

Quality criteria are calculated for the reference period (i.e., 1991–2020) but only one time step and file for 
each month is provided (thus omitting the year in the filename).

Technical Validation
Data quality criteria. The quality of the standardized drought indices is expressed as the fraction or per-
centage of all land pixels and all months during which the Shapiro-Wilks test indicates normality at the 5% signif-
icance level. Figure 3 shows a map of hot spots where the quality criteria are not met and a bar chart that evaluates 
the global quality for both indices and various accumulation windows. The corresponding global acceptance is 
above 90% for all SPEI indices, and for all SPI indices with accumulation windows larger than three months (see 
Fig. 3b). The SPI is generally less reliable than the SPEI (compare dark and light blue in Fig. 3b). The lowest relia-
bility is found for small accumulation windows: only 69% and 90% of all land pixels and all months pass the test 
for normality at 5% for the SPI-1 and the SPEI-1, respectively.

The largest rejection rates are found over the Sahara and the Arabian peninsula. For the SPI with small accu-
mulation periods of one and three months, also south Asia and central and north Australia indicate a lower reli-
ability. If desert and polar regions are excluded, the acceptance frequency for the SPI-1 and the SPEI-1 increases 
to 72% and 94% (not shown), respectively.

This result is expected as especially the SPI is subject to the occurrence of months without precipitation. 
While this can be accounted for (see description above), it can result in a skewed distribution that does not 
follow a gamma distribution anymore and hence the fit and the standardization fail. However, we find that the 
mean acceptance rate for the SPI-1 increases to 76% if regions with more than 3 months with zero precipitation 
in the reference period are excluded, i.e., only regions where pzero  < 0.1 are retained. While many studies 
require at least 30 values other than 0, we intentionally tested these thresholds here and provide also drought 
indices for regions and months with less data availability for exploration. Globally, we find only minor improve-
ments of the acceptance rate as regions with many months of zero precipitation are excluded — however, we 

Fig. 3 Quality of derived drought indices. (a) Global distribution of number of months during which the 
Shapiro-Wilks test for normality indicates a rejection of the null hypothesis for SPEI-3 (α = 0.05). Black colored 
regions indicate full reliability. (b) Global acceptance frequency calculated over all 12 months and all land 
pixels (including desert and polar regions) for the SPI (dark blue) and the SPEI (light blue) for all accumulation 
windows considered.
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suggest to mask the SPI in regions where pzero  > 0.1 (i.e., more than 3 out of 30 values are zero) to increase the 
reliability of the dataset. In addition, we generally also recommended to mask desert and polar regions for both 
SPI and SPEI.

It is noted that also other distributions were tested during the calculation of the SPI and the SPEI, but the 
Gamma and the generalized logistic distribution perform best globally (not shown).

Comparison with other datasets. As drought indices are not observable quantities, the ERA5–Drought 
indices are validated against other global and operational products of the same indices.

The Copernicus Global Drought Observatory (GDO) provides a global SPI dataset with accumulation win-
dows of 1, 3, 6, 9, 12, 24, and 48 months that is available from 1981 to today. This SPI uses precipitation from 
GPCC (http://gpcc.dwd.de/) that is a monthly, gridded precipitation dataset based on measurements from sur-
face synoptic stations that are interpolated to a 1° grid. The “first guess” product from GPCC is used for the 
most recent two months and then updated using the “Monitoring" product. At the time of writing, the reference 
period for the SPI dataset from GDO is 1981–2020. Through the web portal from GDO, this dataset can be 
downloaded as GeoTiff or netCDF files (see https://drought.emergency.copernicus.eu/tumbo/gdo/download).

The Spanish National Research Council (Consejo Superior de Investigaciones Científicas, CSIC) services a 
global SPEI product via their operational drought monitoring system and a corresponding drought database 
(see https://spei.csic.es32,44,49). The CSIC drought monitor provides monthly updates of the SPEI with accumula-
tion periods between 1 and 48 months (i.e., all 48 accumulation periods, from 1, 2, 3, … to 48 months) at 1° res-
olution. For the calculation of this near real-time SPEI, a reference (calibration) period from 1955–2010 is used 
(and extended to 1950 for the 4-year accumulation windows). Near real-time updates are provided using the 
’First guess’ product from GPCC and mean temperatures from NOAA’s Global Historical Climatology Network 
version 2 and the Climate Anomaly Monitoring System (GHCN + CAMS) gridded dataset to estimate potential 
evapotranspiration using the Thornthwaite parameterisation. This 1° estimate of the SPEI near-real time is avail-
able from 1955 to today. In addition to this drought monitoring dataset, CSIC provides a more robust drought 
database that is based on the Penman-Monteith parameterisation of potential evapotranspiration, and uses a 
higher spatial resolution. The most recent version of the Drought database, SPEIbase v2.9 (https://spei.csic.es/
spei_database_2_9), uses gridded observations from the Climatic Research Unit (CRU) of the University of East 
Anglia TS 4.07 dataset as input and is available at 0.5° spatial resolution for all calendar months from January 
1901 to December 2022, and for all accumulation periods between 1 and 48 months.

As comparable drought indices are only available at coarser resolutions than ERA5–Drought (i.e., at 1° and 
0.5°, while ERA5–Drought is available at 0.25°), only a qualitative validation is performed. This validation is 
designed to ensure that the ERA5–Drought data record is free from clerical errors. However, as both GDO and 
CSIC also use other input data, make other assumption and use other reference periods, differences may arise 
from the impact of these factors on the estimation of the drought indices. An overview of the major differences 
are provided in Table 3.

The SPI and the SPEI from ERA5–Drought are compared with the SPI and SPEI from GDO and CSIS, 
respectively. The focus is set on two major drought events in different climates: the most recent drought over 
Brazil and across South America, and Australia’s Tinderbox drought between 2017–201950.

Figure 4 shows the SPI-6, -12, -24 from GDO and from ERA5–Drought over Brazil at and the SPEI-6, -12 
and -24 from CSIC’s drought monitor and ERA5–Drought at the end of November 2023. The CSIC drought 
monitor data at 1° is chosen here, as their drought data base does not contain any data beyond 2022 at the time 
of writing. For better comparison with online data, SPI and SPEI maps are plotted using the color schemes and 
thresholds from GDO and CSIC, respectively.

ERA5–Drought shows good agreements with the SPI from GDO and the SPEI from CSIC for both drought 
events. For the recent drought over Brazil, ERA5–Drought indicates slightly larger and more widespread pre-
cipitation deficits for all accumulation periods (compare Fig. 4a–d with Fig. 4e–h). The corresponding SPEI 
from ERA5–Drought also shows an increased area in drought compared to the SPEI from CSIC (compare 

GDO CSIC ECMWF

Indices SPI SPEI SPI, SPEI

Accumulation window 1, 3, 6, 9, 12, 24, 48 months 1, 2, 3, …, 48 months (all months) 1, 3, 6, 12, 24, 36, 48 months

Lineage P from GPCC P from GPCC and T from NOAA (monitor), 
P and T from CRU (database) P and PET from ERA5

Reference Period 1981-2010 1955-2010 (extended to 1950 for 4-year 
accumulation windows) 1991-2020

Temporal availability 1981-today (2-3 months delay) 1955-today (monitor, 1 month delay), 1901 to 
2022 (database, v2.9)

1940-today (1 month delay for intermediate 
data, 2-3 months delay for consolidated data)

Spatial resolution 1.0° 1.0° (monitor), 0.5° (database) 0.25°

Uncertainty estimates N/A N/A based on ensemble of drought indices

Quality assurance only input data only input data input data and indices (Shapiro-Wilks test for 
normality)

Accessibility and license free (CC-BY 4.0), manual 
downloads via website

free (ODbL 1.0), manual downloads via 
website

free (CC-BY 4.0), downloads via XDS, either 
through the website or using an API in python

Table 3. Overview of other global SPI and SPEI datasets and their differences. Note that GDO provides other 
drought indices as well, but that the information in this table is focused on the SPI as available on their website.

https://doi.org/10.1038/s41597-025-04896-y
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Fig. 4i–l with Fig. 4m–p), though the differences are less pronounced. The same holds for the Tinderbox drought 
in Australia, for which ERA5–Drought also indicates a slightly increased area in drought, especially for the SPEI 
with 1- and 3 month accumulation periods (compare Fig. 5i–j with Fig. 5m,n). However, while differences are 
expected (see reasons explained above), the general drought patterns and intensities for both drought events are 
remarkably similar and highlight the similarity of ERA5–Drought to existing datasets.

Known limitations from ERA5. A key difference in the above depicted drought indices stems from the 
underlying datasets, which are gridded observations or reanalyses and come with their own limitations. In ERA5, 
one notable limitation pertains to the pre-satellite era, particularly before 1980. During this period, the scarcity 
of observational data leads to increased uncertainty in the reanalysis outputs. A study by51 highlights that the 
number of assimilated observations in ERA5 increases from 53,000 per day in early 1950 to 570,000 per day by 
the end of 1978, indicating a significant improvement in data availability over time. Consequently, the quality of 
the reanalysis improves throughout this period, generally joining seamlessly with the segment covering 1979 to 
the present. Additionally, data prior to 1960 may be more strongly influenced by the initial conditions used in 
the reanalysis model, as the limited observational constraints allow model biases and spin-up effects to have a 
greater impact. Therefore, users should interpret early reanalysis data with caution, particularly when analyzing 
long-term trends or extreme events.

Precipitation in ERA5 has been evaluated against in-situ observations and other gridded datasets. Studies 
have found that ERA5 generally provides a realistic representation of precipitation patterns, but discrepancies can 
occur, especially in regions with complex topography or sparse observational networks. For instance21 conducted a 
validation study comparing ERA5 precipitation data with in-situ observations across Europe and found that while 
ERA5 captures the overall precipitation distribution well, extreme precipitation events tend to be underestimated.

Fig. 4 Comparison of the ERA5–Drought dataset to drought indices from GDO and CSIC for Brazil at 
the end of December 2023. Maps show the SPI-1, -6, -12, and -24 from GDO (a,b,c,d) and ERA5–Drought 
(e,f,g,h), and the SPEI-1, -6, -12, -24 from CSIC (i,j,k,l) and ERA5–Drought (m,n,o,p). Note that the color 
schemes and thresholds are adjusted to the GDO and CSIC schemes for SPI and SPEI, respectively.The SPEI 
from CSIC stems from their drought monitor that uses the Thornthwaite equation to estimate potential 
evapotranspiration and provides the indices at 1°resolution. Non-vegetated areas and non-reliable drought 
estimates from ERA5–Drought are masked grey.

https://doi.org/10.1038/s41597-025-04896-y
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Potential evaporation is derived from various parameters in ERA5. In addition to the uncertainties stemming 
from the parameterization to calculate potential evaporation, the accuracy of the input variables plays a role. In 
terms of temperature, ERA5 has been shown to perform well in capturing surface and atmospheric tempera-
ture variability. However52 found that the ERA5 temperatures performed better in temperate regions compared 
to tropical regions when validated against land-based observations from the Global Historical Climatology 
Network. Additionally, during heatwave events, ERA5 may underestimate maximum temperatures due to its 
spatial resolution and the smoothing inherent in reanalysis processes.

In summary, while ERA5 represents a significant advancement in reanalysis data, especially with its high 
spatial and temporal resolution, users should be mindful of its limitations. The accuracy of variables such as 
precipitation and potential evaporation can vary depending on the region, time period, and the availability of 
observational data. While some uncertainties of the derived drought indices can be addressed through the pro-
vided 10-member ensemble (’edmo’ stream), additional uncertainties due to biases in the input variables of SPI 
and SPEI may be present.

Usage Notes
This section provides details on how to access the ERA5–Drought dataset and illustrates usage examples, as the 
dataset offers insights for a range of applications. For example, users can analyse time series of drought occur-
rence and severity for specific locations or undertake more intricate analyses, such as exploring the impact of 
drought on regions and local communities. In the examples that follow we demonstrate how such tasks can be 
accomplished with ease using the ERA5–Drought dataset, focusing on two additional drought-affected regions: 
Catalonia (Spain) and Kenya.

Data access. As described in the Data Record section, the dataset is accessible via the Cross Data Store 
hosted by ECMWF. The ERA–Drought dataset, like any other dataset included in one of the ECMWF-hosted data 
stores, is subject to the CC-BY 4.0 license. This license follows a full free and open data policy, allowing anyone, 
anywhere in the world, to access, share, use and adapt the data. Users are only asked to give appropriate credit and 
indicate if changes were made.

Fig. 5 Same as Fig. 4, but for Australia. The SPEI from CSIC stems from their drought data base that uses the 
Penman-Monteith equation to estimate potential evapotranspiration and provides the index at 0.5°resolution.

https://doi.org/10.1038/s41597-025-04896-y
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The landing page provides an overview of the dataset, its availability and metadata. Under the tab ’Download 
data’, users can explore the dataset through a dynamic web interface that automatically indicates availability of 
the selected index for a specific time period and vice versa.

To download data, users need to register under the CC-BY 4.0 license. After login, data can be downloaded 
via the web interface directly, through the submission of a request, or using an Application Program Interface 
(API). Codes for the selection of the data via the API or python scripts are provided upon selection and facilitate 
access to a broad range of users.

Illustration of use: Time series of area in drought and comparison to previous drought 
events. Figure 6 shows a time series and maps of annual drought events over Catalonia from 1940–2023. The 
time series shows the area experiencing moderate, severe, and extreme drought using the SPEI for each calendar 
year available from the record; colors indicate the intensity of the drought. The intensity of drought events can be 
compared using the area in drought (see Fig. 6a) and the spatial distribution of drought severity (see Figs. 6b-f), 
and exceptionally dry years can be identified. Figure 6 corroborates the severity of droughts in 2004–2007, 2017, 
and 2023, which have been studied and discussed intensively (e.g.53,54).

In addition, the ERA5–Drought data also considers many years between 1940–1960 as dry — while there 
have been studies that corroborate this finding (e.g.55–57), the dry anomalies prior to 1980 may be subject to 
biases in the back-extension of ERA5 (see limitations described above): the general variability of monthly pre-
cipitation from ERA5 shows good correspondence with observations from 1950 onward for all continents51. 
However, in addition to the availability of more conventional observations from 1978 onward, the accuracy of 
the reanalysis dataset is increasing as satellite data becomes available and helps to monitor the climate globally. 
Previous studies have shown that precipitation in ERA5 shows the smallest errors in the extra-tropics21, but that 
any reanalysis is subject to biases throughout the production period58. The ERA5–Drought dataset relies on the 
data from ERA5 and is thus subject to the accuracy of this dataset. Drought events identified at the beginning 
of the data record should hence be considered subject to biases, although a debate about these rather dry years 
is ongoing.

Illustration of use: Association with impacts on society. Prolonged droughts can have far-reaching 
impacts that affect society (e.g.59), and especially highly-vulnerable societies are predicted to experience more 
frequent and more intense water shortages induced by drought60. These water shortages affect the availability of 
drinking water and can further cause crop failure and food insecurity and, in the worst case induce famine and 
cause deaths61. The ERA5–Drought data can be used to associate registered water- and food insecurity events with 
the occurrence and intensity of meteorological droughts and thus enables applications beyond environmental 
science. Here, we demonstrate the use of ERA5-Drought in conjunction with impact data from the Emergency 
Events Database (EM-DAT62), which records the occurrence of natural disaster worldwide and compiles their 
socio-economic impacts from reports and articles published by press agencies, UN-, non-governmental, and 
other research organizations, among others. Drought events in EM-DAT are registered if 10 or more fatalities 

Fig. 6 Usage example: Climatology of annual drought events over Catalonia, Spain. (a) Time series of the area 
of Catalonia in moderate/severe/extreme drought (in %, indicated in light/medium/dark brown colors) based 
on the SPEI-12 for each calendar year between 1940–2023 using the ERA5–Drought dataset. (b–e) Maps of four 
of the most extensive annual drought events over Catalonia, i.e., 1945, 1950, 2017, 2023. Near-normal values are 
masked white (analogous to Fig. 2).
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were reported, 100 or more people were affected, a state of emergency was declared, or a call for international 
assistance was issued. While the EM-DAT database is constantly growing, it is not considered to be exhaus-
tive — yet, it enables an estimation of the impact of droughts on society. An analysis of Kenya’s impacts illus-
trates the co-occurrence of meteorological drought (expressed as the SPI-12) with food insecurity as reported 
in EM-DAT. Figure 7 shows the area of Kenya affected by droughts as brown bars, the registered impacts as 
orange symbols (i.e., famine, crop failure & food shortage, and food shortage as orange triangles, stars, and cir-
cles, respectively) and the number of people affected as orange bars. This analysis shows that all reported drought 
impacts occurred during or shortly after meteorological droughts. In particular, ERA5-Drought identifies the 
years 2021–2022/2023 as extremely dry, which left approx. 50.1 million people food insecure at the end of 202363, 
thus further supporting the credibility of the ERA5-Drought dataset.

These usage examples demonstrate that ERA5-Drought facilitates a multitude of applications, ranging from 
the identification, over the evaluation to a contextualization of meteorological drought events under climate 
change. In conjunction with other socio-economic datasets, ERA5-Drought can be used to, e.g., assess the 
impact of droughts and the resilience and vulnerability of societies to droughts worldwide.

Code availability
The codes to reproduce the figures in this manuscript are available as jupyter notebooks via https://github.com/
jkeune/ERA5-Drought_data. In addition, as part of ECMWF’s Code4Earth challenge (see https://codeforearth.
ecmwf.int for details), an interactive jupyter book with detailed information on the data and drought storylines 
with visualisations that explore and explain this drought dataset is being developed: https://ecmwfcode4earth.
github.io/tales-of-drought/. At the date of resubmission of this manuscript, the jupyter book is still in 
development.
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