Enhance Response to Climate Change Challenges: CENTAUR's Integrated Approach to Climate Security and

Early Warning Systems

4-6 Nov 2025 Turin, Italy

Emanuele Artù Cassin [1], Matilde Oliveti [1], Gabriel Lazazzara [2], Valerio Botteghelli [3], CENTAUR Project Team [1] Ithaca SRL, [2] SpaceTec partners, [3] e-GEOS and CENTAUR Consortium

ıthaca

01. Introduction

Climate change is an undeniable reality, and its effects on human lives and global security are steadily increasing. Over the past five decades, the number of natural disasters has grown **fivefold**.

Within EU's comprehensive security strategy, climate change is gaining greater recognition as a **critical factor**. Already today, environmental changes are forcing people to migrate. While migration itself is not typically viewed as a direct security threat, it is often linked to rising societal tensions and growing competition for limited resources (Schaik L., Bakker T., 2017)¹.

02. Objectives

CENTAUR (Copernicus ENhanced Tools for Anticipative Response to Climate Change in the Emergency and Security Domain) is a research and development initiative funded under the Horizon Europe programme, aimed at addressing contemporary societal challenges. The project seeks to develop and validate innovative service components within the frameworks of the Copernicus Emergency Management Service (CEMS) and Support to EU External and Security Actions (SESA). CENTAUR is a three-year project that commenced in December 2022.

05. Use cases

CENTAUR explores various use cases related to the two thematic areas:

- Cold cases: Well-documented crisis events from the past.
- Hot cases: Ongoing or upcoming events that will occur during the course of the project.

Urban Flood - Lombardy

CONTEXT & BACKGROUND

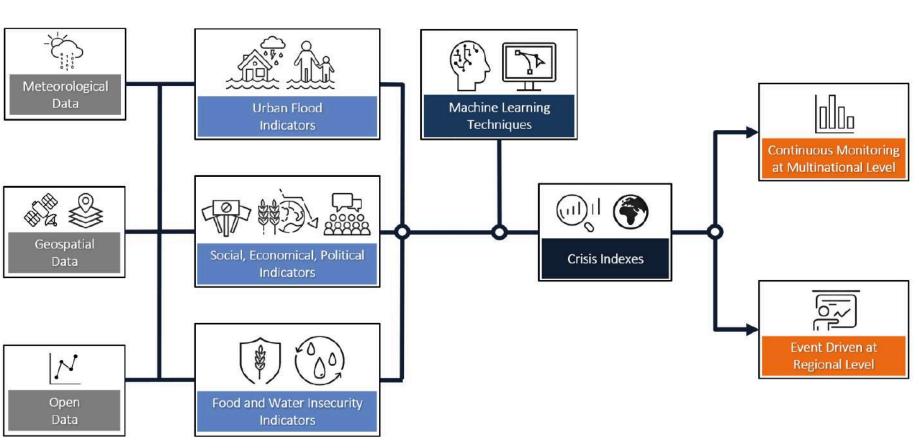
- Caused extensive damage to infrastructure and
- Overall cumulative impacted area: 59.6 ha

03. Domains

Urban Flood (UF)²

- Boost the capabilities of the existing **CEMS** urban flood detection system by identifying key indicators and tracking their performance, using EO and downscaled city-level meteorological forecasts.
- Establish an early warning system that triggers alerts when predefined crisis thresholds are met.

Water and Food Security (WFS)³


- Expanding the **CSS SESA** portfolio by incorporating new vulnerability and fragility indices.
- Strengthening warning early capabilities continuous **monitoring** of indicators and drivers of social unrest, population displacement, and conflicts related to food and water insecurity.

04. Methodology

three main components:

CENTAUR employs a structured, multi-layered approach to enhance crisis understanding and response:

- Data: A foundation built on multidimensional datasets.
- Indicators: Thematic insights extracted from time series data and modelbased combinations.
- Crisis Indexes: Advanced integration of flood, food, and water insecurity data alongside socio-economic and political indicators.

INDICATORS

UF-ID-1: Static map of precipitation associated to return period

UF-ID-2: Forecast of return period

UF-ID-3: High-resolution urban flood risk maps for various return periods

UF-ID-4: Inferred InSAR urban flood extent

UF-ID-5: Enhanced urban flood damage assessment **UF-ID-6:** Social/Traditional media indicators for Urban Flooding Map

UF-ID-9: Assets and financial resources

UF-ID-10: Public services and government support

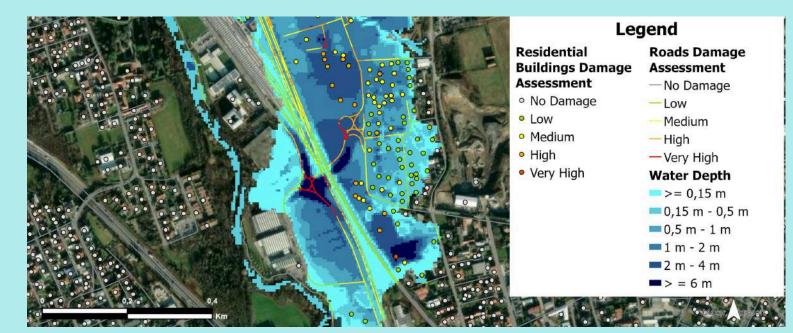
UF-ID-13: Ability to evacuate

UF-ID-14: Economic impact of floods

INDEXES

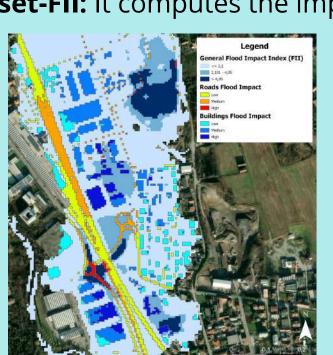
UF-IX-01: Flood Early Warning Index

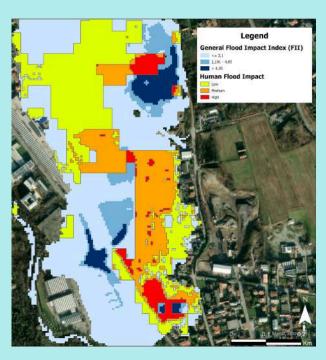
UF-IX-02: Flood Impact Index


UF-IX-03: Medium High Vulnerability Zones

• Geomorphological model with SAR/optical inputs: converts the initial raw flood mask into an urban-aware, drainage-consistent outline.

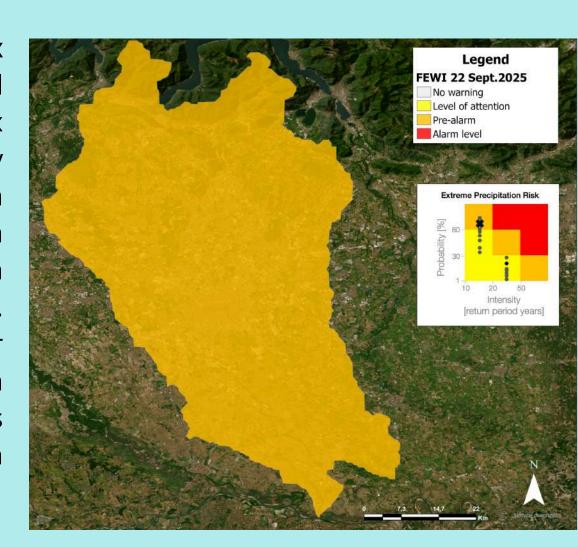
UF-ID-5: This product delivers an improved flood-extent and depth


delineation as well as rapid post-event damage assessment, comprising

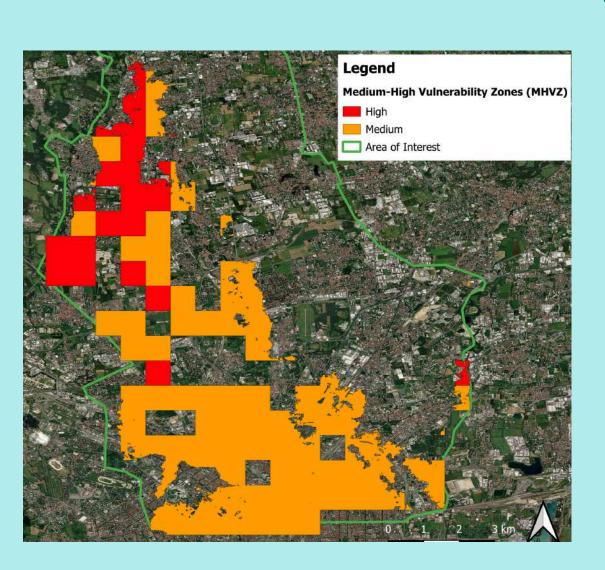

- Water depth: Reconstructs a plausible water surface from the DTM and subtracts terrain to yield a smooth, GIS-ready depth raster.
- Damage assessment: Applies global depth-damage curves with country max values to compute per-asset damage factor, €/m², and impact class (Low-Very High).

Flood Impact Index (FII): After the occurrence of the flooding event, the FII estimates the potential impact over the Area of Interest by distinguishing into physical, human and asset impact. Therefore, the index is partitioned into the following components:

- General-FII: It quantifies the impact of flooding by integrating Corrected Flood Depth (CFD) measurements and land-use characteristics
- Human-FII: It calculates the impact of flooding on people by combining physical flood parameters with socio-economic and demographic indicators
- **Asset-FII:** It computes the impact on critical infrastructures and assets



Severe flooding occurred on 22 Sept - 2025


- Requested CEMS activation (EMSR843)
- Exposed population: over 1.3 million
- buildings

Early Warning

Flood Early Warning Index (FEWI): The meteorological component of the index leverages UF-ID-2 probability maps to build an alert system that, using fuzzy logic and a risk matrix, triggers an alarm up to 3-day lead time. Consequently, the indicator UF-ID-3 is employed to obtain high-resolution flooding maps for 10, 20 and 50 years return period.

Vulnerability Medium-High **Zones (MHVZ):** This earlywarning index combines crisis (UF-ID-3) and socio-economic indicators (UF-ID-9,10,13) to delineate the most vulnerable areas that are predicted to be flooded in the affected urban area. The vulnerability stems from a combination of the expected flood-impact, average income and accessibility to roads and emergency services.

Water Food Security - Somalia

CONTEXT & BACKGROUND

- Ranked 2° most climate-affected country globally
- Hit by prolonged droughts and failed rainy seasons • Over 70% of the population in poverty, reliant on rainfed agriculture
- and pastoralism
- High risk of displacement, conflict, and food insecurity from environmental shocks

• Crisis worsened by political instability, extremism, and civil unrest

INDICATORS

WFS-ID-1: Current precipitation deficits **WFS-ID-2:** Future precipitation deficits **WFS-ID-3:** Probabilities of drought aggravation and recovery

WFS-ID-4: Current drought impact on vegetation productivity **WFS-ID-5:** Future drought impact on

WFS-ID-6: Agricultural drought risk zone map **WFS-ID-7:** IDPs camps status indicator

vegetation productivity

WFS-ID-8: Populations at risk of food insecurity

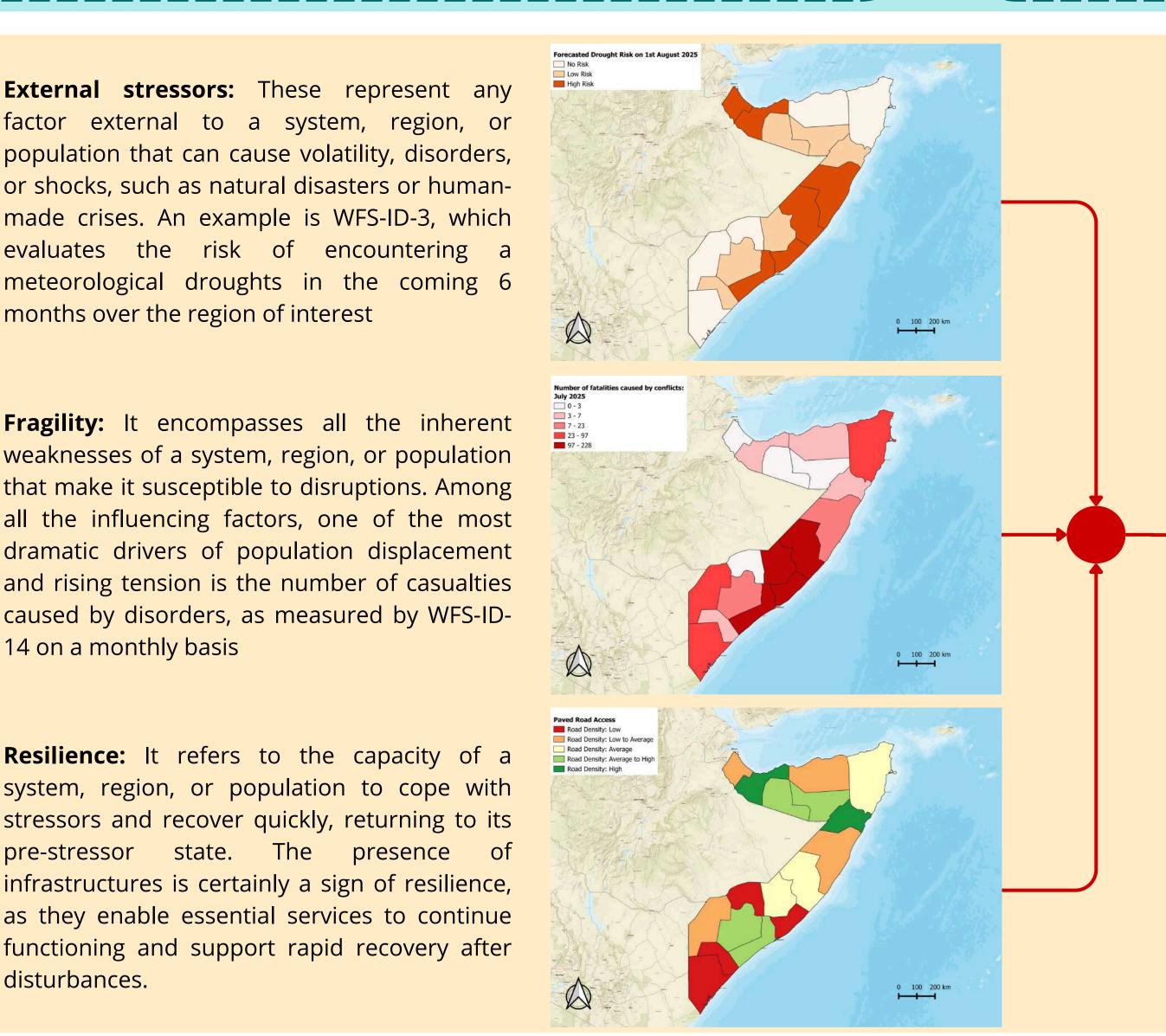
WFS-ID-9: Populations at risk of water insecurity

conflict-affected areas

WFS-ID-11: Food insecurity **WFS-ID-12:** Economic insecurity **WFS-ID-13:** Displaced persons

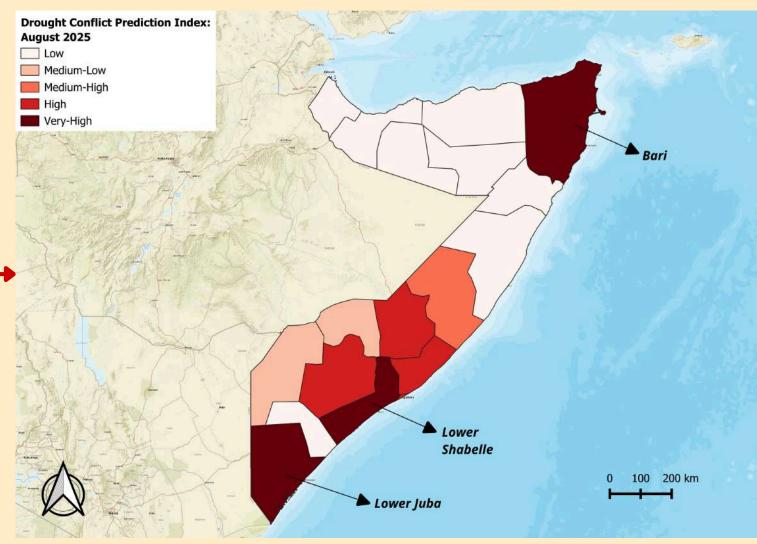
WFS-ID-18: Resource capture WFS-ID-19: Climate sensitivity of agrifood systems

WFS-ID-21: Public services and infrastructures WFS-ID-23: State-citizen relations


mechanisms

WFS-ID-25: Social cohesion and trust

factor external to a system, region, or population that can cause volatility, disorders, or shocks, such as natural disasters or humanmade crises. An example is WFS-ID-3, which evaluates the risk of encountering a meteorological droughts in the coming 6 months over the region of interest


Fragility: It encompasses all the inherent weaknesses of a system, region, or population that make it susceptible to disruptions. Among all the influencing factors, one of the most dramatic drivers of population displacement and rising tension is the number of casualties caused by disorders, as measured by WFS-ID-14 on a monthly basis

Resilience: It refers to the capacity of a system, region, or population to cope with stressors and recover quickly, returning to its pre-stressor state. The presence of infrastructures is certainly a sign of resilience, as they enable essential services to continue functioning and support rapid recovery after disturbances.

environmental, economic, and societal factors, CENTAUR automatically generates alerts and identifies regions at risk of increased food insecurity, violent conflict, and displacement. As illustrated in the example below, during July 2025, an alert would have been issued for August 2025, indicating that the regions of Lower Shabelle, Lower Juba and Bari were at high risk of conflict escalation.

CENTAUR's Early Warning System (EWS): By integrating

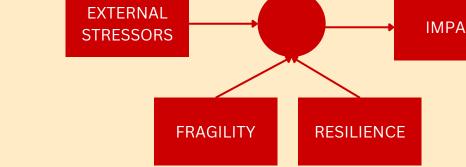
Toward a more resilient future: The risk maps provided by the EWS, together with local and regional information (e.g., road access, public services, and infrastructures) and access to historical and current region-specific data, enable the preparation of targeted and timely interventions that support smarter, context-aware responses.

6. Consortium

7. Acknowledgements

centaur-horizon.eu

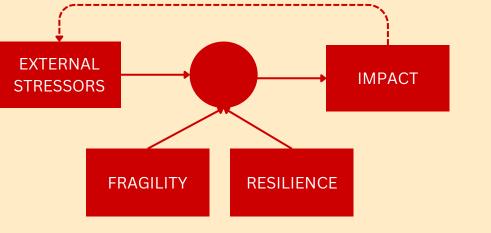
CENTAUR_EU


info@centaur-horizon.eu

centaur-eu.bsky .social

8. References

- 1. Schaik, L., Bakker, T. (2017). Climate-migration-security: Policy Brief Making
- the most of a contested relationship. Planetary Security. 2. Hurricane Katrina, New Orleans. Retrieved through Pixabay.
- https://pixabay.com/photos/new-orleans-louisiana-81669/ 3. Drought in Burkina Faso. Retrieved through Unsplash. https://unsplash.com/it/foto/brown-wooden-boat-on-brown-sand-during-
- daytime-8wuOLdN77A4 This project has received funding from the European Union's Horizon Europe research and innovation programme under



WFS-ID-10: Number of people living in

WFS-ID-14: Violent conflict WFS-ID-15: Radicalisation and polarisation WFS-ID-17: Humanitarian aid

WFS-ID-24: Dispute resolution

DCPI/DDPI: The Drought Conflict Prediction Index and the Drought Displacement Prediction Index estimate respectively the number of conflicts and of displacement resulting from periods of prolonged meteorological and agricultural drought. To adopt an holistic approach, the models encompass indicators of external stressors, fragility and resilience to forecast the expected impacts on a region of interest monthly.

